Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1221436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692441

RESUMO

Magnesium (Mg2+) is essential for photosynthesis in the chloroplasts of land plants and algae. Being the central ion of chlorophyll, cofactor and activator of many photosynthetic enzymes including RuBisCO, magnesium-deficient plants may suffer from leaf chlorosis symptoms and retarded growth. Therefore, the chloroplast Mg2+ concentration is tightly controlled by magnesium transport proteins. Recently, three different transporters from two distinct families have been identified in the chloroplast inner envelope of the model plant Arabidopsis thaliana: MGT10, MGR8, and MGR9. Here, we assess the individual roles of these three proteins in maintaining chloroplast Mg2+ homeostasis and regulating photosynthesis, and if their role is conserved in the model green alga Chlamydomonas reinhardtii. Phylogenetic analysis and heterologous expression revealed that the CorC-like MGR8 and MGR9 transport Mg2+ by a different mechanism than the CorA-like MGT10. MGR8 and MGT10 genes are highest expressed in leaves, indicating a function in chloroplast Mg2+ transport. MGR9 is important for chloroplast function and plant adaptation in conditions of deficiency or excess of Mg2+. Transmission electron microscopy indicated that MGT10 plays a differential role in thylakoid stacking than MGR8 and MGR9. Furthermore, we report that MGR8, MGR9, and MGT10 are involved in building up the pH gradient across the thylakoid membrane and activating photoprotection in conditions of excess light, however the mechanism has not been resolved yet. While there are no chloroplast MGR-like transporters in Chlamydomonas, we show that MRS4 is a homolog of MGT10, that is required for photosynthesis and cell growth. Taken together, our findings reveal that the studied Mg2+ transporters play essential but differential roles in maintaining chloroplast Mg2+ homeostasis.

2.
Biotechnol Biofuels ; 11: 171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951115

RESUMO

BACKGROUND: Plants and in particular grasses benefit from a high uptake of silicon (Si) which improves their growth and productivity by alleviating adverse effects of biotic and abiotic stress. However, the silicon present in plant tissues may have a negative impact on the processing and degradation of lignocellulosic biomass. Solutions to reduce the silicon content either by biomass engineering or development of downstream separation methods are therefore targeted. Different cell wall components have been proposed to interact with the silica pool in plant shoots, but the understanding of the underlying processes is still limited. RESULTS: In the present study, we have characterized silicon deposition and cell wall composition in Brachypodium distachyon wild-type and low-silicon 1 (Bdlsi1-1) mutant plants. Our analyses included different organs and plant developmental stages. In the mutant defective in silicon uptake, low silicon availability favoured deposition of this element in the amorphous form or bound to cell wall polymers rather than as silicified structures. Several alterations in non-cellulosic polysaccharides and lignin were recorded in the mutant plants, indicating differences in the types of linkages and in the three-dimensional organization of the cell wall network. Enzymatic saccharification assays showed that straw from mutant plants was marginally more degradable following a 190 °C hydrothermal pretreatment, while there were no differences without or after a 120 °C hydrothermal pretreatment. CONCLUSIONS: We conclude that silicon affects the composition of plant cell walls, mostly by altering linkages of non-cellulosic polymers and lignin. The modifications of the cell wall network and the reduced silicon concentration appear to have little or no implications on biomass recalcitrance to enzymatic saccharification.

3.
J Trace Elem Med Biol ; 49: 269-275, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29449108

RESUMO

Agronomic biofortification is one of the main strategies for alleviation of micronutrient deficiencies in food and feed. The objective of this study was to investigate the effect of N supply on total concentration of Zn and Fe and their chemical species in the soluble extracts of maize silage grown under field conditions. Total concentrations of Zn, Fe, Cu, Mn, S and P were measured by flow-injection inductive coupled plasma (ICP) - mass spectrometer (MS). Soluble Fe and Zn were extracted and analyzed by size exclusion-inductively coupled plasma mass spectrometry. Using the same set-up for total elemental and speciation analysis enabled direct quantitative comparison of the detected speciated molecules with the total element sample content. N or Zn treatment, except in control plots, did not significantly affect concentrations of Zn and Fe in the maize silage and grain samples. Significant positive correlation was observed between Zn and Fe maize silage (r = 0.64, p < 0.01) and maize grain (r = 0.85, p < 0.01) concentrations. N and Zn treatment did not affect solubility of Zn and Fe, while available Zn and Fe were affected by increase in Zn soil treatment. Soluble Zn was speciated in LMW complexes, while soluble Fe was speciated in MMW and LMW complexes.


Assuntos
Ferro/metabolismo , Nitrogênio/metabolismo , Zea mays/metabolismo , Zinco/metabolismo
4.
Nutrients ; 9(11)2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29113123

RESUMO

(1) Background: Iron requirement increases during pregnancy and iron supplementation is therefore recommended in many countries. However, excessive iron intake may lead to destruction of pancreatic ß-cells. Therefore, we aim to test if higher neonatal iron content in blood is associated with the risk of developing type 1 diabetes mellitus (T1D) in childhood; (2) Methods: A case-control study was conducted, including 199 children diagnosed with T1D before the age of 16 years from 1991 to 2005 and 199 controls matched on date of birth. Information on confounders was available in 181 cases and 154 controls. Iron was measured on a neonatal single dried blood spot sample and was analyzed by laser ablation inductively coupled plasma mass spectrometry. Multivariate logistic regression was used to evaluate if iron content in whole blood was associated with the risk of T1D; (3) Results: A doubling of iron content increased the odds of developing T1D more than two-fold (odds ratio (95% CI), 2.55 (1.04; 6.24)). Iron content increased with maternal age (p = 0.04) and girls had higher content than boys (p = 0.01); (4) Conclusions: Higher neonatal iron content associates to an increased risk of developing T1D before the age of 16 years. Iron supplementation during early childhood needs further investigation, including the causes of high iron in neonates.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Ferro/sangue , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Razão de Chances , Fatores de Risco
5.
Plant Physiol ; 159(3): 1125-37, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22582132

RESUMO

Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization of the proteins. Here, we document that barley (Hordeum vulgare) MT3 and MT4 proteins exist in planta and that they differ in tissue localization as well as in metal coordination chemistry. Combined transcriptional and histological analyses showed temporal and spatial correlations between transcript levels and protein abundance during grain development. MT3 was present in tissues of both maternal and filial origin throughout grain filling. In contrast, MT4 was confined to the embryo and aleurone layer, where it appeared during tissue specialization and remained until maturity. Using state-of-the-art speciation analysis by size-exclusion chromatography inductively coupled plasma mass spectrometry and electrospray ionization time-of-flight mass spectrometry on recombinant MT3 and MT4, their specificity and capacity for metal ion binding were quantified, showing a strong preferential Zn binding relative to Cu and cadmium (Cd) in MT4, which was not the case for MT3. When complementary DNAs from barley MTs were expressed in Cu- or Cd-sensitive yeast mutants, MT3 provided a much stronger complementation than did MT4. We conclude that MT3 may play a housekeeping role in metal homeostasis, while MT4 may function in Zn storage in developing and mature grains. The localization of MT4 and its discrimination against Cd make it an ideal candidate for future biofortification strategies directed toward increasing food and feed Zn concentrations.


Assuntos
Hordeum/metabolismo , Metalotioneína/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Zinco/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Aminoácidos , Cádmio/toxicidade , Cromatografia em Gel , Cobre/toxicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hordeum/efeitos dos fármacos , Hordeum/genética , Hordeum/ultraestrutura , Espectrometria de Massas , Metalotioneína/química , Metalotioneína/genética , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/ultraestrutura , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...